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We study the transition to the continuum of an initially bound quantum particle
in Rd, d=1, 2, 3, subjected, for t \ 0, to a time periodic forcing of arbitrary
magnitude. The analysis is carried out for compactly supported potentials,
satisfying certain auxiliary conditions. It provides complete analytic information
on the time Laplace transform of the wave function. From this, comprehensive
time asymptotic properties (Borel summable transseries) follow.We obtain in
particular a criterion for whether the wave function gets fully delocalized
(complete ionization). This criterion shows that complete ionization is generic
and provides a convenient test for particular cases. When satisfied it implies
absence of discrete spectrum and resonances of the associated Floquet operator.
As an illustration we show that the parametric harmonic perturbation of a
potential chosen to be any nonzero multiple of the characteristic function of a
measurable compact set has this property.

KEY WORDS: Ionization; delocalization; resonances; Floquet theory; Borel
summability.

1. INTRODUCTION

We consider the non-relativistic Schrödinger equation for the wave func-
tion k(x, t), x ¥ Rd

i
“k

“t
=(−D+V(x)+W(x, t)) k (1.1)



where W(x, t) is a time-periodic external potential (not necessarily small):

W(x, t)=W(x, t+2p/w), w > 0 (1.2)

We take V and W real-valued and so that

V ¥ L.(Rd), W ¥ L.(Rd×[0, 2p/w]) (1.3)

with W – 0 satisfying

W(x, t)=C
j ¥ Z

Wj(x) e ijwt, Wj(x)=W−j(x); sup
j, x

|Wj(x)| j2 <. (1.4)

We set, without loss of generality,

W0(x)=0 (1.5)

We are interested in the behavior of solutions k(x, t) for large t when

k(x, 0)=: k0(x) ¥ L2(Rd), F
R
d
|k0 |2 dx=1 (1.6)

and k0 is sufficiently regular (we assume it of class C4). Of particular
interest is the survival probability for the particle in a ball B in Rd,
>x ¥ B |k|2 dx :=PB(t). If PB(t) approaches zero as tQ. for all B, then we
say that the particle escapes to infinity and complete ionization occurs.

While many results in the paper only require (1.3), (1.4) plus sufficient
algebraic decay of W and V for large |x|, some specific results later in the
paper, particularly detailed analytic information, require that V and W are
compactly supported,

supp(V) 2 supp(W( · , t)) … D (1.7a)

and others require the same also for k0 in (1.6)

supp(k0) 2 supp(V) 2 supp(W( · , t)) … D (1.7b)

with

D … Rd compact, Rd0D connected, meas(“D)=0

The rest of the paper will therefore be written in the context of this setting.
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1.1. Nature of the Results

Under the assumptions (1.7b) k(x, t) is obtained for large t as a con-
vergent combination of exponentials and Borel summable power series
in t−1/2.

If an additional assumption (connected to the absence of discrete
spectrum of the Floquet operator) is satisfied, the long time expression of k
contains only decaying terms, cf. Theorem 12 in Section 3.8, i.e., we get
complete ionization.4

4While explicit information on long time behavior requires k0 to be localized, decay for more
general k0 ¥ L2 is then an immediate consequence of the unitarity of Schrödinger evolution.

We find in Proposition 14 a convenient sufficient condition for
complete ionization, and show that it is satisfied by a nonperturbative
example5

5 The same results hold if a bounded time-independent potential, not necessarily constant,
with compact support disjoint from D is added to V, see Remark 25.

V(x)=VD qD(x); W(x, t)=2WD qD(x) sin wt (1.8)

where qD is the characteristic function of D in d=1, 2, 3 and VD and WD
are arbitrary nonzero constants.

We previously obtained similar results for more general potentials in
d=1 and radially symmetric ones in d=2, 3. See refs. 6–11 where there is
a review of our previous work on this problem.

1.2. Strategy of the Approach

The key steps of our approach are outlined in Section 3.4. The method
we use is based on a study of the analytic properties of k̂, the Laplace
transform of k. The type and position of the singularities of k̂, given in
Theorem 7 and Lemma 8, provide information about the time behavior of
k; the former are obtained from an appropriate equation to which the
Fredholm alternative approach applies.

2. LAPLACE TRANSFORM, LINK WITH FLOQUET THEORY

Exisence of a strongly differentiable unitary propagator for (1.1) (see
ref. 23, v.2, Theorem X.71) implies that for k0 ¥ L2(Rd), the Laplace trans-
form

k̂( · , p) :=F
.

0
k( · , t) e−pt dt (2.1)
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exists for R(p) > 0. It satisfies the equation

(−D+V(x)−ip) k̂(x, p)=−ik0− C
j ¥ Z

Wj(x) k̂(x, p−ijw) (2.2)

and the map pQ k( · , p) is L2 valued analytic in the right half plane

p ¥H={z : R(z) > 0} (2.3)

Clearly, Eq. (2.2) couples k̂(x, p1) with k̂(x, p2) iff (p1−p2) ¥ iwZ. Setting

p=i(s+nw) with Rs ¥ [0, w) (2.4)

(sometimes it will be technically helpful to relax this restriction on s) we
define y[1]n (x; s)=k̂(x, i(s+nw)). Equation (2.2) now becomes a differen-
tial-difference system

(−D+V+s+nw) y[1]n =−ik0− C
j ¥ Z

Wj(x)(S−jy[1])n (2.5)

where the shift operator S is given by

(Sy)n=yn+1 (2.6)

2.1. Connection with Floquet Theory

The solution of (1.1) with time periodic W is of course the subject of
Floquet theory (see refs. 2 and 16–23) and therefore our analysis connects
to it in a number of ways. Let K be the quasi-energy operator in Floquet
theory

(Ku)(x, h)=1 −i
“

“h
−D+V(x)+W(x, h)2 u(x, h); x ¥ Rd, h ¥ S12p/w

(2.7)

Then, letting

u(x, h; s)=C
n ¥ Z

y[1]n (x; s) e inwh (2.8)

be the solution of the eigenvalue equation

Ku=−su (2.9)
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we get an equation for the y[1]n which is identical to the homogeneous part
of Eq. (2.5)6. Solutions of (2.9) with u ¥ L2(Rd×S12p/w) correspond to

6 The functional spaces are different. Proposition 18 clarifies this question.

eigenfunctions of K.

Remark 1. If u is an eigenfunction of K corresponding to the
eigenvalue −s, then ue−ijwh is an eigenfunction with eigenvalue −s+jw.
For this reason it is enough to restrict s to the strip given in (2.4).

Complete ionization clearly requires the absence of a discrete spectrum
of (2.9) (Otherwise, if u(x, h) is an eigenfunction of K, then e istu(x, t)
would be a space localized solution of the Schrödinger equation.) In a
recent work, (16) Galtbayar, Jensen and Yajima proved that the opposite is
also true. They obtained asymptotic series in t−1/2 for the projection of
the wave function k(x, t) on the space orthogonal to the discrete spectrum
of K.

Our approach via Laplace transform is different from that of ref. 16.
For the corresponding time evolution our results are stronger than those
obtained in ref. 16 but apply to the more restrictive classes of V and W
satisfying (1.7b) in d=1, 2, 3. We show that the time behavior of k(x, t) is
given by a Borel summable transseries containing both power law decay
and exponential terms. For potentials satisfying our condition (1.8) we
show that K has no discrete spectrum or resonances and all the exponen-
tials are decaying.

More details on the connection between our work, Floquet theory and
ref. 16 are given in Section 5.

3. INTEGRAL EQUATION, COMPACTNESS, AND ANALYTICITY

3.1. Laplace Space Equation

To simplify contour deformation, we first improve the decay of k̂ for
large p, by pulling the first two terms in the asymptotic behavior for large p
from k̂. Let dij=1 if i=j, and 0 otherwise, dcij=1−dij and define the
operator N by

(Nf)n(x)=(−D+V)
dcn0fn(x)
s+nw

−dn0fn, x+C
k ] n
Wn−k(x)

dck0fk(x)
s+kw

(3.1)
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3.2. Green Function Representation

To pass to an integral form of the system of Eqs. (3.1) we apply to
them the Green function of (−D+s+nw), given by

(gnf)(x)=F G(on(x−xŒ)) f(xŒ) dxŒ (3.2)

with

on=`−ip=`s+nw (when p ¥H, on is in the fourth quadrant) (3.3)

and

G(onx)=˛
1
2 o
−1
n e−on |x| d=1

1
2p K0(on |x|) d=2
1
4p |x|

−1 e−on |x| d=3
(3.4)

(see ref. 23) where K0 is the modified Bessel function of second kind,

K0(x)=F
.

0
e−x cosh tdt=e−x F

.

0

e−xs

`s(s+2)
ds (3.5)

Note that, in the setting (1.7), for f supported in D we have

(gnf)(x)=F
D
G(on(x−xŒ)) f(xŒ) dxŒ (3.6)

Equation (3.1) in integral form reads

y[1]n =−ignk0+(Cy[1])n (3.7)

where

y[1]=(y[1]n )n ¥ Z and (Cy[1])n=−gn 5Vy[1]n +C
j ¥ Z

Wj(x)(S−jy[1])n6

(3.8)

To ensure better decay with respect to n we further substitute in (3.8)

y[1]n =−ignk0−ik1, n+yn (3.9)
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where (k1, n)n ¥ Z=: k1 and

k1=C[(gnk0)n ¥ Z] (3.10)

Then y satisfies

y=w+C(s) y (3.11)

(We write C for C(s) when the dependence on s need not be stressed.) In
differential form (3.11) reads

(−D+s+nw) yn=ik2, n−Vyn− C
j ¥ Z

Wj(x)(S−jy)n (3.12)

3.3. The Hilbert Space

To analyze the properties of (3.11) we use the Hilbert space

H=l2c(L
2(B)) (3.13)

where B is an arbitrary ball (containing D) defined as the space of sequen-
ces {yn}n ¥ Z, yn ¥ L2(B) with

||y||2H=C
n ¥ Z

|n|c ||yn ||
2
L2(B) <.

and adequate c; we take for definiteness c=3/2; larger c can be taken if
one assumes more differentiability than (1.4) implies. (Note that H is dif-
ferent from the Hilbert space L2(L2(Rd)) used in Floquet theory. See also
Section 5.)

3.4. Strategy of the Approach, Continued

As mentioned, unitarity of the evolution shows that k̂( · , p) ¥ L2(Rd) if
R(p) > 0. In the integral form (3.11), whose solutions are in H when
R(p) > 0, the operator is, under our assumptions, compact. The solution
of this equation is shown to be unique in H for large enough R(p) by
the contractivity of the integral operator. Uniqueness and analyticity
of the solution for p in the right half plane H follow by an application of
the analytic version of the Fredholm alternative. (23) We then show that the
solution and thus k̂ are analytic with respect to a uniformizing variable, in
appropriately chosen domains containing parts of the imaginary axis. The
contour of the inverse Laplace transform, yQ c+iy; y ¥ R, c > 0, can then
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be deformed to iR (the boundary of H) where k̂ is analytic except for a
discrete set of square root branch points. The large time behavior of k
follows.

3.5. Compactness

In d=1, we further transform the equation, see (A.3) in Appen-
dix A.1, to improve the regularity of the operator at n=0 and s=0.

Lemma 2. Under the assumptions (1.7a), w ¥H and C is a compact
operator onH.

To show that w ¥H we use the fact that the operators gn satisfy (see
Appendix A of ref. 1, and also Section 7.1).

sup
n ¥ Z

(1+|n|)1/2 ||gn ||L2(D) <. (3.14)

Then

sup
n ¥ Z

(1+|n|)1/2 ||(gnk0)n || <. implying sup
n ¥ Z

(1+|n|) ||k1, n ||L2(D) <. (3.15)

In view of (1.4) we also have

sup
n ¥ Z

(1+|n|) >Vk1, n+C
j ¥ Z

Wj(x)(S−jy)n >
L2(D)

<. (3.16)

implying

sup
n ¥ Z

(1+|n|3/2) ||wn ||L2(D) <. (3.17)

It is not difficult to check that gn is compact on L2(B) for each n; it is
more delicate to show compactness of C; both properties are proved in
Section 7.

3.6. Uniqueness

Lemma 3. For large enough −Is, Eq. (3.11) has a unique solution
inH.

The proof is given in Appendix B.
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3.7. Analytic Structure of k̂

Remark 4. It is convenient to introduce the uniformizing variable
s=u2; with the natural branch of the square root, u is in the fourth
quadrant when s is in the lower half plane. In this variable, we write o0=u
and on=`nw+u2 for n ] 0.

Proposition 5. In the setting (1.7a) the operator C(s) is analytic in
u in the region Sw={u: |Ru2| < w} hence in`s in the strip (see Remark 1)

{s: R(s) ¥ (−w, w)} (3.18)

Additionally, C(s) is analytic in s at any s ] 0.

Proof. In terms of u we define o0=u, on=`u2+nw and then on is
analytic in u in the simply connected region Sw for any n ¥ Z. Since in the
setting (1.7) the integral (3.6) is over a compact set, D, gn is also analytic
for any n ¥ Z. Analyticity of C follows from the fact that

C= lim
NQ.

CN (3.19)

with

(CN y)n :=˛
(Cy)n; |n| [N
0 otherwise

(3.20)

and convergence is uniform in u on compact subsets of Sw. This is shown in
Lemma 27. L

Proposition 6. There exists a unique solution y to (3.11) and it has
the same analyticity properties as C if

(A) For Is [ 0(v=Cv, v ¥H)S v=0 (3.21)

Proof. This is nothing more than the analytic Fredholm alternative
(see, e.g., ref. 23, Vol 1, Theorem VI.14, pp. 201). L

This formulation is convenient in determining the analytic properties
of y with respect to s, instrumental for the Borel summability results stated
in Proposition 10.
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Theorem 7. If (A) and (1.7b) hold, then:

(i) the solution y of (3.11) is meromorphic in u in the disk
{u: |u| <`w}, see Remark 4, analytic at u=0 and in the fourth quadrant
of S`w. Furthermore, y is analytic in s at any s0 ] 0.

(ii) k̂ is analytic in p in a cut neighborhood of iR, {p: R(p) > − E}
with cuts toward −. at i n w, n ¥ Z. Furthermore, in a neighborhood of
i n w, see (2.4), we have k̂(p)=An(p)+Bn(p)`s where An and Bn are
analytic at i n w and, for some E <`w and |u| [ E we have

sup
n ¥ Z, |u| < E

nc(||An(p)||L2(B)+||Bn(p)||L2(B)) <. (3.22)

Proof. (i) follows from Propositions 5 and 6, and from the link
between k̂ and yn.

(ii) The functions An and Bn, are simply the even and odd part
respectively of the analytic function yn(x; u). The estimate follows from the
fact that y(x; u)±y(x;−u) ¥H is analytic in u for |u| < E.

In Proposition 10 and Theorem 12 below we use the following result.

Lemma 8. In the setting (1.7b), if k̂ has a pole at s=s0 ¥ iR, then,
in the variable s−s0 if s0 ] 0 or u if s0=0, the pole is simple.

This is shown in Appendix C. L

Proposition 9. Condition (A) is satisfied for the potentials (1.8).

Proof. This is established in Section 6. L

3.8. Asymptotic Expansion of k and Borel Summability

Proposition 10. In the setting (1.7b) there exist N ¥N, {Ck}k [N,
and {Fw; k(t, x)}k [N, 2p/w-periodic functions of t, such that, for t > 0,

k(t, x)=C
j ¥ Z

e ijwthj(t, x)+C
N

k=1
Pk(t) e−CktFw; k(t, x) (3.23)

with RCk \ 0 for all k [N, Pk(t) are polynomials in t, reducing to constants
if RCk=0, and the hj(t, x) have Borel summable power series in t−1/2

hj(t, x)=LB C
k \ k0

hkj(x) t−k/2 (3.24)

with k0 \ 1.
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Remark 11 [Borel Summation]. If f̃ is a formal power series, say
in inverse powers of t, then F̃=Bf̃ is also a formal power series, defined
as the term-wise inverse Laplace transform in t of f̃. If (1) F̃ is convergent,
(2) its sum F can be analytically continued along R+ and (3) ,n s.t.
F(p) ¥ L1(R+, e−npdp), then the Laplace transform LF is by definition the
Borel sum of f̃ denoted byLBf̃. In our context we have, more precisely,

hj(t, x)=F
.

0
Fj(`p , x) e−pt dp ’C

k
hkj(x) t−k/2, tQ+.

where the functions Fj(s, x) are analytic in s in a neighborhood of R+ and
for any b ¥ R there exist a constant C such that for all j and p ¥ R+,

sup
p \ 0; |x| < b

|Fj(`p, x) e−C |p|| [ fj

where the fj decay in j faster than j−2 under the assumption (1.4) and
factorially if W is a trigonometric polynomial. Thus the function series in
(3.23) converges (rapidly in the latter case).

The role of condition (A) is described in the following result.

Theorem 12. (i) If (A) holds, then on the right side of (3.24) and
(3.23) we have

k0 \ 3 and RCk > 0 for all k. (3.25)

In particular we have complete ionization of the system. (See also Proposi-
tion 9, as well as Proposition 14 and Remark 15 below.)

(ii) If (A) is not satisfied, then some RCk may vanish; the part of k
corresponding to these Ck remains a spatially localized quasiperiodic func-
tion of t. Exceptionally, k0=1 if (A) does not hold (see also ref. 16 and
Proposition 18).

The proofs of Proposition 10 and Theorem 12 are sketched in
Appendix D. In one dimension a similar result is stated in ref. 6.

4. IONIZATION CONDITION FOR COMPACTLY SUPPORTED

POTENTIALS

For the setting (1.7) we derive a technically convenient condition
implying (A).
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Assume 0 ] v ¥H and v=Cv. Then there exists a nontrivial solution
inH to the system

(−D+s+nw) yn=−Vyn− C
j ¥ Z

Wj(x) yn−j (4.1)

We multiply (4.1) by ȳn, integrate over a ball B containing D, sum over n
(which is legitimate since y ¥H) and take the imaginary part of the result-
ing expression. Noting that

C
j, n ¥ Z

Wj(x) yn−jyn= C
j, n ¥ Z

W−jȳn−j yn= C
j, n ¥ Z

Wjȳn+j yn

= C
j, m ¥ Z

Wj(x) ymym−j (4.2)

so the sum (4.2) is real, we get

0=I 1 −s C
n ¥ Z

||yn ||2+F
B

C
n ¥ Z

dx ȳn Dyn 2

=−Is C
n ¥ Z

||yn ||2+
1
2i

F
“B

1 C
n ¥ Z

ȳnNyn−ynNȳn 2 ·n dS (4.3)

We take d=3 (the analysis is simpler in one or two dimensions). It is
convenient to decompose yn using spherical harmonics; we write

yn= C
l \ 0, |m| [ l

Rn, l, m(r) Y
m
l (h, f). (4.4)

The last integral in (4.3), including the prefactor, then equals

−8pir2B C
n ¥ Z

C
m, l

[R̄n, m, lR
−

n, m, l−R̄ −n, m, l Rn, m, l]

=−8pir2B C
n ¥ Z

C
m, l

W[R̄n, m, l, Rn, m, l] (4.5)

where rB is the radius of B and W[f, g] is the Wronskian of f and g.
On the other hand, since V and W are compactly supported, we have outside
of B

Dyn−(s+nw) yn=0 (4.6)
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and then by (4.4), Rn, l, m satisfy for r > rB the equation

Rœ+
2
r
RŒ−

l(l+1)
r2

R=(s+nw) R (4.7)

where we have suppressed the subscripts. Let gn, l, m=rRn, l, m. Then for the
gn, l, m we get

gœ−5l(l+1)
r2

+(s+nw)6 g=0 (4.8)

thus

R̄RŒ=
ḡgŒ
r2

−
|g|2

r3
(4.9)

and

r2W[R̄, R]=W[ḡ, g]=: Wn. (4.10)

Multiplying (4.8) by ḡ, the conjugate of (4.8) by g and subtracting, we get
for r > rB,

W −

n=(s− s̄) |g|2=2i |g|2 I s (4.11)

Remark 13. Simple estimates using Eq. (3.21), the definition (3.2)
and (3.3) imply that, for some cn,

yn(x)=
e−on |x|

|x|
(cn(h, f)+O(|x|−1)) as |x|Q. (4.12)

Let us consider two cases of (4.1).

Case (i). Is < 0. By Remark 13 we have

g ’ Ce−onr(1+o(1)) as rQ. (4.13)

There is a one-parameter family of solutions of (4.8) satisfying (4.13) and
the asymptotic expansion can be differentiated. (29) We assume, to get a
contradiction, that there exist n for which gn ] 0. For these n we have,
using (4.13), differentiability of this asymptotic expansion and (3.3) that

1
2i
lim
rQ.

|gn |−2Wn=−Ion > 0. (4.14)
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It follows from (4.11) and (4.14) that 12iWn is strictly positive for all r > rB
and all n for which gn ] 0. This implies that the last term in (4.3) is a sum
of positive terms which shows that (4.3) cannot be satisfied.

Case (ii). I s=0. For n > 0 there exists only one solution g of (4.8)
which decays at infinity (cf. Remark 13 and the discussion in Case (i)), and
since (4.8) has real coefficients this g must be a (constant multiple of a) real
function as well; therefore we haveWn=0 for n \ 0.

For n < 0, we use Remark 13 (and differentiability of the asymptotic
expansion as in Case (i)) to calculate the Wronskian Wn of g, ḡ in the limit
rQ.: Wn=|cn |2 (1+o(1)). Since for I s=0, Wn is constant, cf. (4.11), it
follows thatWn is exactly equal to |cn |2. Thus, using (4.3) and (4.5) we have

yn(x)=0 for all n < 0 and |x| > rB (4.15)

Proposition 14. In the setting (1.7a), if (A) fails, then we have

yn(x)=0 for all n < 0 and x ¨ D (4.16)

Outside D we have Oyn=0, where O is the elliptic operator −D+
s+nw. The proof follows immediately from (4.15), by standard unique
continuation results (17, 22, 28) (in fact, O is analytic hypo-elliptic).

Remark 15. Proposition 14 points toward generic ionization under
time periodic forcing. Indeed, we see from (4.16) that Eqs. (4.1) are for-
mally overdetermined when n < 0 (yn is in the domain of D so that, in (4.1),
the function and ‘‘one derivative’’ are given on the boundary) and are
expected, generically, not to have nontrivial solutions even if yn had to
satisfy (3.12) for n < 0 only.

The latter reduced problem is relatively easier to study and we used it
to show that (A) holds in a number of settings, including the potential
(1.8), see ref. 6.

Remark 16. There do in fact exist nongeneric potentials (though
not in the class (1.3)) for which ionization fails. (8, 21, 24)

5. CONNECTION WITH FLOQUET THEORY, CONTINUED

Proposition 17. If u is an eigenfunction or resonance7 of the

7 See ref. 16 and Proposition 18 (ii).

operator K defined in (2.7) such that u ¥ L2(R3×S12p/w), then u=Cu in H
and so (A) fails.
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The proof is an immediate consequence of Proposition 28 in
Appendix E. Conversely, we have the following result.

Proposition 18. We assume the setting (1.7a).

(i) If v=Cv for some s0 ¥ (0, w) and v ¥H, then v ¥ l2(L2(Rd)) thus
it is an eigenfunction of K.

(ii) If v=Cv for s0=0 and v ¥H, then, for d=3, v is of the form
v=C |x|−1 dn0+ṽ(x) where ṽ ¥ l2(L2(R3)) (resonance of K).

Proof of Proposition 18. For the same reasons as before, we focus
on d=3.

(i) We see from (3.6), (3.4), and (4.16) that for all n we have yn ¥
L2(R3). Furthermore, a straightforward calculation shows that ||yn ||L2(R3)
[ C ||yn ||D where C is independent of n. Proposition 28 in Appendix A.5
gives the necessary estimates in n to complete the proof in this case.

(ii) For n ] 0 we have, for the same reasons as in (i), yn ¥ L2(R3). But
now, at n=0, since s0=0, the Green function (3.4) does not have enough
decay to ensure y0 ¥ L2(R3). We have instead, for xŒ ¥ D and |x|Q.,
G0(x−xŒ)= 1

4p |x|
−1+O(|x|−2). The statement now follows from (3.6) and

(3.11). L

6. EXAMPLE (1.8)

To show that it can be effectively checked whether (4.16) can be
nontrivially satisfied, we consider the example (1.8). It is convenient to
Fourier transform the system (4.1) in x. In view of (4.16), for n < 0, yn=0
outside D. We then have, for n < 0,

y̌n :=F
R
3
yne−ik ·x dx=F

D
yne−ik ·x dx (6.1)

and

−k2y̌n=−k2 F
R
3
yne−ik ·x dx=F

R
3
Dyn e−ik ·x dx=F

D
Dyn e−ik ·x dx (6.2)

For the setting (1.8) and n < −1, (4.1) reads

(k2+s+nw) y̌n=−VDy̌n+iWD(y̌n+1−y̌n−1) (6.3)
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Remark 19. For n [ −1, the functions y̌n are entire of exponential
order one; more precisely, if B is a ball containing D we have

|y̌n(k)| [`Vol(D) e |k| rB ||yn ||L2(D) (6.4)

Proof. This follows immediately from the definition of y̌. (See also
ref. 32 for a comprehensive characterization of the Fourier transform of a
compactly supported distribution.)

Proposition 20. The generating function

Y(k, z)= C
m \ 0

y̌−m−2(k) zm (6.5)

is entire in k and analytic in z for |z| < 1.

Proof. Since y ¥H we have

||yn ||L2(D) [ const |n|−3/2 (6.6)

Using Remark 19 the conclusion follows.
A straightforward calculation shows that Y satisfies the equation

MY−z
“Y
“z

−ib 1z−1
z
2 Y=iby̌−1+ib

y̌−2
z

(6.7)

where

M=w−1(k2+s−2w+VD) (6.8)

and b=WD/w. The solution of (6.7) is

Y=zMe−ib(z+z
−1) 5C(k)−ib F

z

0
e ib(s+s

−1) 1 y̌−1
sM+1

+
y̌−2
sM+2
2 ds6 (6.9)

where the integral follows a path in which 0 is approached along the
negative imaginary line.

Remark 21. Proposition 20 implies C(k) — 0.

Proof. It is easy to check that otherwise the limit of Y(k, z) as zQ 0
along iR− would not exist. L

Thus

Y(k, z)=−ibzMe−ib(z+z
−1) F

z

0
e ib(s+s

−1) 1 y̌−1(k)
sM+1

+
y̌−2(k)
sM+2
2 ds (6.10)
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We now use the nontrivial monodromy of Y on the Riemann surface of
log z, following from the integral representation (6.10). Analytic continua-
tion around the origin gives

ib−1e ib(z+z
−1)(Y( · , ze2pi)−Y( · , z))=y̌−1 G

C

e ib(s+s
−1)

sM+1
ds+y̌−2 G

C

e ib(s+s
−1)

sM+2
ds

(6.11)

where C is the curve shown in Fig. 1. Let

F(M)=G
C

e ib(s+s
−1)

sM
ds (6.12)

Proposition 22. We have

y̌−1(k) F(M+1)+y̌−2(k) F(M+2)=0 (6.13)

Proof. This follows immediately from the discussion above. L

Proposition 23. For every large N ¥N, F(z) has exactly one zero
of the form zN=N+o(N0). For large N we have F(1+zN) ] 0.

Fig. 1. The curve C.
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Proof. It turns out that F(M) is a Bessel function of order M
evaluated at 2 and a proof can be given based on this representation.
However, in view of later generalizations we prefer to give a more general
argument that does not rely on explicit representations.

Let M=N+z with N a large positive integer, z complex with |z|=E
and E positive and small. Let C1 be the counterclockwise circle {z: |z|=1}
and L the segment [0, −i]; we write

F(N+z)=(1−e−2piz) F
L

e ib(s+s
−1)

sM
ds+F

C1

e ib(s+s
−1)

sM
ds

=2piz(1+O(z−1)) F
L

e ib(s+s
−1)

sM
ds+F

C1

e ib(s+s
−1)

sM
ds (6.14)

where in the integral along L the principal branch of the log is used. The
integral over L can be estimated with Watson’s Lemma, see, e.g., ref. 3

2piz F
L

e ib(s+s
−1)

sM
ds=iz(2p)3/2 b1−NNN−3/2e−Ne−z ln(b/N)(1+o(N0))

By the Riemann–Lebesgue lemma, >C1 Q 0 as NQ.. We get

F(N+z)=iMz(2p)3/2 b1−NNN−3/2e−Ne−z ln(b/N)(1+o(N0, z0))+o(N0)
(6.15)

The existence of a unique simple zero at some N+zN with |zN | < E is a
consequence of the argument principle.

The position of zN can be found more accurately as follows. We have

zN=
zN

1−e−2pizN
F
C1

e ib(s+s
−1)

sN+zN
ds 1F

L

e ib(s+s
−1)

sN+zN
ds2

−1

(6.16)

from which it follows that zN=o(constN/N!) which readily implies that
(6.16) is contractive and that

zN=
1
2pi

F
C1

e ib(s+s
−1)

sN
ds 1F

L

e ib(s+s
−1)

sN
ds2

−1

(1+o(N0)) (6.17)

Using (6.15) and the fact that the first integral in (6.17) gives the Laurent
coefficients of e ib(s+s

−1) which can be independently estimated from the
series expansion, we find that, with constants that can be calculated,

|zN |=c1c
N
2 N

−2N+c3(1+o(N0)) (6.18)
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Thus zN+1/zN Q 0 as NQ. and the second part of the Proposition
follows.

Proposition 24. Relation (6.13), with y̌−1(k), y̌−2(k) entire of
exponential order one (cf. Remark 19) implies

y̌−1(k)=y̌−2(k)=0 -k ¥ C3 (6.19)

and then

yn(x)=0 -n ¥ Z and almost all x ¥ Rd (6.20)

Proof. Propositions 22 and 23 and (6.8) imply that y̌−1(k) has at
least const R2 zeros in a disk of large radius R. Since y̌−1(k) is an entire
function of exponential order one, it follows that y̌−1 — 0 (see, e.g., ref. 25).
By (6.13) we have y̌−2 — 0, so that y−1 — y−2 — 0.

In the present model (4.1) reads

(−D+s+nw) yn=−VDqD yn−iWDqD(yn+1−yn−1) (6.21)

and (6.21) with n=−1 and n=−2 implies qD y0=0, qD y−3=0 respec-
tively; inductively qD yn=0 for all n. Then (−D+s+nw) yn=0 in Rd0“D.
Since, by Proposition 18, yn ¥ L2(R3) we see (for instance by taking the
Fourier transform) that ||yn ||=0.

Remark 25. It can be shown that condition (A) holds with VDqD
replaced by VDqD+V1(x) where V1(x) is bounded, not necessarily constant,
with compact support disjoint from D. On the support of V1, W is zero and
it can be seen that for n sufficiently negative yn is zero on the support of V1.
From this point on the arguments are very similar, but we will not pursue
this here.

7. COMPACTNESS

7.1. Compactness of the Operator gn Defined in (3.6)

The case d=1 is discussed in Appendix A. For d=2, 3 compactness
follows from Theorem VI.23 , Vol. 1, pp. 210 of ref. 23 (for d=3, note
that e−on |x−y|/|x−y| ¥ L2(D×D)).

7.2. Compactness of C

The property (3.14) is mentioned in Appendix A of ref. 1. We include
here an elementary proof of (7.1) below (which also can be refined without
serious difficulty to yield the sharper estimate (3.14)).

Ionization in Time-Periodic Potentials 301



Lemma 26. We have

||gn ||0 0 as |n|Q. (7.1)

(where || · || is the L2(D)W L2(D) operator norm) uniformly in u in the
region Sw, E, A={u : |u| < A, |R(u2)| < w− E}, where A > 0 and E is any small
positive number.

Proof. Relation (7.1) follows from a general result by Agmon ref. 1
which provides estimates on the rate of convergence. We give below an
elementary proof in our case.

We prove the result for d=3 (the proof is simpler in d=1, 2, noting
that for large x with arg x ¥ (−p, p) we haveK0(x)=`

p
2 e
−xx−1/2(1+o(1))).

Define

Qn(xŒ, xœ)=F
D
dx

e−on |xŒ−x|− ōn |xœ−x|

|xŒ−x| |xœ−x|
(7.2)

We have

||gn ||2= sup
||f||=1

F
D2
Qn(xŒ, xœ) f(xŒ) f(xœ) dxŒ dxœ

[ 1F
D2
|Qn(xŒ, xœ)|2 dxŒ dxŒ 2

1/2

(7.3)

The last integral goes to zero as |n|Q.. To see that, note that

`nw+u2=`nw+O(n−1/2); as nQ+. (7.4)

and using the triangle inequality we get

|Qn(xŒ, xœ)| [ Const e−`nw |xŒ−xœ| F
D

dx
|xŒ−x| |xœ−x|

[ Const e−`nw |xŒ−xœ| (7.5)

and the conclusion, for nQ+., follows by dominated convergence. We
now focus on large negative n. Since

`nw+u2=−i`|n| w+O(n−1/2); as nQ −. (7.6)
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it is easy to check that (7.1) follows once we show that ||g[n] ||Q 0 as nQ.
where ||g[n] || is obtained by replacing on with in in the definition of gn. We
first show, with an analogous definition of Q[n], that

sup
x, xŒ ¥ D, n ¥ R

|Q[n](x, xŒ)|=Q0 <. (7.7)

Indeed, we choose a ball Bb centered at xŒ of radius b large enough so that
it contains D and write the integrals (7.2) in spherical coordinates centered
at xŒ with xœ on the z axis; in these coordinates |x−xŒ|=r and |x−xœ|
\ d(x, Oz)=r sin h and thus

|Q[n](x, xŒ)| [ F
Bb

dx
|x−xŒ| |x−xœ|

[ F
Bb
dr dh df [ 4pb (7.8)

Let r(x; xŒ, xœ)=|x−xŒ|− |x−xœ|. We then have |r(x; xŒ, xœ)| [
|xŒ−xœ| and we get

Q[n](xŒ, xœ)=F
D
dx

e inr(x; xŒ, xœ)

|xŒ−x| |xœ−x|
=F

|xœ−xŒ|

−|xœ−xŒ|
e inr dm(r)

where the positive measure m is defined by

m(A)=mxŒ, xœ(A)=F
{x : r(x) ¥ A} 5 D

dx
|xŒ−x| |xœ−x|

(7.9)

Since the integrand in (7.9) is in L1, the measure m is absolutely continuous
with respect to the Lebesgue measure m. We let h(r; xŒ, xœ)=

dm
dm ; then

h ¥ L1 and we get

Q[n](xŒ, xœ)=F
|xœ−xŒ|

−|xœ−xŒ|
e inrh(r; xŒ, xœ) dr (7.10)

By the Riemann–Lebesgue lemma we have8

8Noting that the estimate of the norm of gn can only increase if extended to L2(B) where B is
a ball containing D, and that h calculated in B is piecewise smooth the max of Q[n] can be in
fact bounded by an inverse power of n; we do not however need this refinement here.

Q[n](xŒ, xœ)Q 0 as nQ. (7.11)

Now (7.7), (7.11) and again dominated convergence implies ||g[n] ||Q 0 as
nQ. completing the proof.

Lemma 27. Under the assumption (1.7a), the operator C is compact
onH and analytic in u in Sw, E, A, cf. Lemma 26.
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Indeed, C is the norm limit (3.19), uniform in u ¥ Sw, E, A, where CN are
compact by Lemma 26 and analytic as explained in the proof of Lemma 5.
We note that the operator

> C
j ¥ Z

WjS−j> (7.12)

is bounded in H. Indeed, if we write OnP :=1+|n| we have, for (n, j) ¥ Z2

OnP [ OjPOn−jP and

C
n ¥ Z

OnPc : C
j ¥ Z

Wj yn−j :
2

[ C
n ¥ Z

1 C
j ¥ Z

OjPc/2 |Wj | On−jPc/2 |yn−j |2
2

= C
j1, j2 ¥ Z

Oj1P
c

2 |Wj1 | Oj2P
c

2 |Wj2 | C
n ¥ Z

On−j1P
c

2 |yn−j1 | On−j2P
c

2 |yn−j2 |

[ ||y||2l2c ||OjP
c/2 Wj ||

2
1 [ C ||y||2l2c (7.13)

by (1.4). L

A. APPENDIXES

A.1. Compact Operator Formulation and Proof of Lemma 2 for d=1

We can assume without loss of generality D … [−1, 1]. For n=0 we
choose some large positive a such that sin 2`a ] 0, denote by f± (x) the
functions e + ux and let k+ be the solution of the equation

−kœ+(aq[−1, 1]+u2) k=0 (A.1)

(see Remark 4) with initial condition k+(1)=f+(1), k
−

+(1)=f −+(1), and
similarly let k− be the solution of (A.1) with initial condition k−(−1)=
f−(−1), k

−

−(−1)=f −−(−1). Since both the equation and the initial condi-
tions are analytic in u at u=0, so are the solutions k± and their
Wronskian W(u). It can be checked that W(0)=`a sin 2`a ] 0. In fact,
taking ya=`a−u2 we have

k± (x)=y
−1
a e−u[ya cos(yax + ya) + u sin(yax + ya))] (A.2)
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In a neighborhood of u=0 we write for n ] 0 the same integral expression
(3.11), while for n=0 we write

y0=g0, ak1, 0−g0, a(V+aq[−1, 1]) y0+ig0, a 1 C
j ¥ Z

WjS−jy2
n

(A.3)

where

W(u)(g0, af)(x)=k+(x) F
x

−1
k+(s) f(s) ds−k−(x) F

x

1
k−(s) f(s) ds (A.4)

With the same conventions, we now write the integral system in the form
(3.11). Compactness and analyticity are now shown in the same way as for
d=2, 3. L

A.2. Proof of Lemma 3

Let s=s0−2iy where s0 ¥ [0, w) and y > 0. We show that

||C||Q 0 as yQ. (A.5)

and uniqueness follows by contractivity. The calculation leading to (A.5) is
quite straightforward, but we provide it for convenience. In d=1, 2 the
estimate follows from the behavior of the Green function for large argu-
ment. We then focus on d=3. By (3.3) we have

R(on)=(12 ((s0+nw)2+s0+nw)1/2+y)1/2 (A.6)

For n > 0 we then have Ron >`nw and the same calculation as for (7.5)
shows that

||gn ||||0
L2(B)

0 as nQ+. (A.7)

uniformly in y. For n < 0 (A.6) gives

|Qn(xŒ, xœ)| [ |Qn(xŒ, xœ)| (A.8)

where

− n :=I(on)Q. as nQ −. (A.9)

and now (7.11) shows that

||gn ||||0
L2(B)

0 as nQ −. (A.10)
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uniformly in y. We choose then n0 large enough so that

sup
n \ n0, y > 0

||gn || [ E (A.11)

For y large enough we have, still from (A.6),

R(on) >
1
2 y
1/2; −n0 [ n [ n0 (A.12)

Choosing a ball B centered at x containing D, we then have for large y and
some constants independent of f, y, x, and n ¥ (−n0, n0), with the notation
a=1

2 y
1/2,

|(gnf)(x)| [ >
e−a |x−xŒ|

|x−xŒ|
>
L2(D)

||f||L2(D)

[ C1 ||f||L2(D) >
e−a |x−xŒ|

|x−xŒ|
>
B
[
C2
y
||f||L2(D) [ E (A.13)

and the conclusion follows.

A.3. Proof of Lemma 8

Assume s0 is a value of s where invertibility of I−C(s0) fails. Then
s0 ¥ [0, w). By the Fredholm alternative we know that I−C(s) is invertible
in some punctured neighborhood of s0 where the solution of (3.11) is
meromorphic.

(i) s0 ] 0. Denote z=s−s0. We rewrite (3.11) in a suitable way near
s0. We have from (3.12)

(−D+s0+nw) yn=−ik2, n−Vyn−zyn+C
j ¥ Z

Wj(x)(S−jy)n (A.14)

which we write symbolically

Wy=−zy−ik2, n (A.15)

and from (3.12) and (3.11) we have

yn=−ignk2, n−gn 5Vyn−zyn− C
j ¥ Z

Wj(S−jy)n6 (A.16)

implying the following version of (3.11), with evident notation,

y=y0+zgy+C(s0) y (A.17)
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On the other hand,

y= C
.

j=−M
cjz j (A.18)

with the coefficients cj ¥H. Assume, to get a contradiction, that M \ 2.
Inserting in (A.17) we get

c−M=C(s0) c−M (A.19)

c−M+1=C(s0) c−M+1+gc−M

· · ·

In differential form we have,

Wc−M=0 (A.20)

Wc−M+1=−c−M (A.21)

By (A.19) and Proposition 18 we have c−M ¥ l2(L2(Rd)) :=H1 (in fact,
(c−M)n decay at least exponentially in |x|). On the other hand we then have
from (A.20) and noting the formal self-adjointness ofW,

Oc−M, c−MP=−Oc−M,Wc−M+1P=−OWc−M, c−M+1P=0 (A.22)

which is a contradiction.

(ii) s0=0. There are two differences w.r.t case (i): (a) mero-
morphicity and Laurent expansions now use the variable u=`s; and (b)
c−M is not necessarily in H1 so we work with HB=l2(L2(B)) for large
enough B. These differences can be dealt with straightforwardly, so we just
outline the main steps. The Laplacian is the only ingredient of W not for-
mally self-adjoint in HB. Integration by parts, implicit in (A.22) brings in
boundary terms of the form

F
“B
f Ng ·dS (A.23)

where f and g are c−M or c−M+1. Both f and g have decay |x|−1 and this
behavior is differentiable, as is manifest from (A.19), (3.4), and (3.6). The
contribution from the integrals (A.23) is thus O(r−1B ) which equals the
norm ||c−M ||HB , clearly nondecreasing in rB. This again forces c−M=0, a
contradiction. L
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Fig. 2. Deformation of the integration contour.

A.4. Sketch of the Proof of Proposition 10 and Theorem 12

We first show Theorem 12 (i). The contour of the inverse Laplace
transform can be deformed as shown in Fig. 2. Pushing the contour of
integration to the left brings in residues due to the meromorphic integrand,
and since the kernel of the inverse Laplace transform is ept, residues in the
left half plane give rise to decaying exponentials in k(x, t). Uniform
bounds on the Green function as pQ −. are easy to prove. Consequently,
there are only finitely many arrays of poles of k̂. The contour of integra-
tion in the inverse Laplace transform can be pushed all the way to −. in
view of the exponential decay of the kernel ept. We are left with integrals
along the sides of the cuts which, after the change of variable pY −p (or
pY −pe ia if poles exist on the cuts), are seen to be Laplace transforms.
Since k̂ is analytic in `p+inw, the contour deformation result shows, ipso
facto, Borel summability of the asymptotic series of k(x, t) for large t.

The general case is proved in a very similar way, using Lemma A. If
condition (A) does not hold, then some of the poles of the meromorphic
function yn(s) can belong to the segment (−w, w). If a pole is placed at
s=0, then analyticity in u in the operator entails a singularity of the form
s−1/2A(s)+B(s) with A and B analytic, whence the conclusion.

308 Costin et al.



A.5. Estimates Needed for Proposition 17 and Proposition 18

Proposition 28. Let y be a solution in l2(L2(B)) of the homoge-
neous equation associated to (3.12). Under the assumptions (1.7b), we have

||yj ||L2(B)=O(j−2) as | j|Q. (A.24)

Let E be small enough and choose j0 > 0 large enough (the proof is
similar for j0 < 0) so that ||gj ||L2(B) < E for all j \ j0, see (7.1). We consider
the Banach space Bj0 of sequences of functions {yj}j \ j0 defined on B for
which the norm

||y||j0 :=sup
j \ j0

j2 ||yj ||L2(B) (A.25)

is finite. For j > j0 we write the homogeneous part of (3.12) in the form

yj=−gjVyj+igj 5 C
m \ 0
W−m ym+j(x) 5 C

0 [ l [ j−j0

Wl yj− l(x)+ C
l \ j−j0

Wl yj− l(x)6

=−gjVyj+igj 5 C
m \ 0
W−m ym+j(x)+ C

0 [ l [ j−j0

Wl yj− l(x)6+Ej(x)

=: (Tj0 y+E)j (A.26)

Since ||Wj ||L2(B)=O(j−2) and y ¥ l2(L2(B)) we see that ||E||j0 <.. It can be
checked that Tj0 : Bj0 QBj0 is bounded, that ||Tj0 ||Q 0 as j0 Q., and thus
Eq. (A.26) is contractive if j0 is large. The Proposition follows.
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